Internet-Draft | Accurate Data Scheduling by Server | June 2022 |
Kang, et al. | Expires 18 December 2022 | [Page] |
This document defines a new mechanism that enables MPTCP server to send requests to MPTCP client for data scheduling between specified subflows during a MPTCP session.¶
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.¶
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.¶
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."¶
This Internet-Draft will expire on 18 December 2022.¶
Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved.¶
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.¶
MPTCP protocol is being deployed in various networks. In most scenarios, MPTCP scheduling strategies for subflows are implemented on client considering RTT and congestion, or sending packets redundantly. MPTCP server does not participate in such decision-making.¶
However, in actual deployment, MPTCP server is configured with multiple network interfaces and these network interfaces are from different operators. There are some scenarios in which MPTCP server wants to set scheduling algorithms on these network interfaces based on its own rules, network planning and operating policies. These scheduling algorithms need to be passed to the MPTCP client and executed on the client during a MPTCP session. Requirements for these use cases are described below:¶
Currently, there are two implementations related to these requirements. [RFC8684] defines REMOVE_ADDR Option to delete one address during a MPTCP session but it will close all subflows bound to this address. draft-hoang-mptcp-sub-rate-limit-00 proposes a Subflow Rate Limit Option which can be used by sender to receiver for setting the rate of one subflow to zero.¶
For the use cases in this document, existing technologies are somewhat inadequate because they do not provide a clear indication of which subflow to switch to.¶
An accurate data scheduling mechanism for MPTCP server is proposed in this document. Two typical flows are illustrated in Figure 1 and Figure 2.¶
For the use case of adding a new network interface to a MPTCP session for data shceduling, normal process of ADD_ADDR should be executed before traffic switching.¶
If it is determined to cancel the data switching on a subflow, the client should delete the navigation information for it. Navigation information is generated by MPTCP client and is used to determine the target subflow for data switching based on the address ID of the target network interface.¶
After data switching, if the subflow with diverted traffic is disconnected, the client should delete the navigation and configuration information for it. The navigation information is generated by the client and is used to determine the target subflow for data switching based on the address ID of the target network interface.¶
Four subflows have been established between client and server that are <IP1, IP3>, <IP2, IP3>, <IP1, IP4> and <IP2, IP4>. On the client, IP1 and IP2 are the address IDs for WiFi and a cellular network. On the server, IP3 and IP4 are the address IDs for Ethernet and WiFi. When a new 5G network is deployed on the server, the server can switch the data traffic on the subflow <IP2, IP4> to the destination IP5 corresponding to 5G. In this case, the target network interface is IP5.¶
Four subflows have been established between client and server that are <IP1, IP3>, <IP2, IP3>, <IP1, IP4> and <IP2, IP4>. On the client, IP1 and IP2 are the address IDs for WiFi and a cellular network. On the server, IP3 and IP4 are the address IDs for Ethernet and WiFi. Server tool detects that KPI for IP4 is better now so the server can switch data traffic on the subflow <IP1, IP3> to the destination IP4.¶
MP_Navigation option is defined and sent from server to force client to switch traffic from the subflow over which the option was received to a target subflow, or to cancel traffic switching when it is not required. MP_Navigation option includes a Flag 'R' to distinguish this two functions. If it is set, the target subflow is determined through the Address ID of the target network interface in MP_Navigation option.¶
MP_Navigation option can be sent in ACK.¶
Noted that if MP_Navigation option is not supported by the MPTCP client, it should be omitted when received.¶
The format of the MP_Navigation option is depicted in Figure 3:¶
Subtype: a new subtype should be allocated to indicate MP_Navigation Option.¶
Flag 'r': reserved for future usage.¶
Flag 'R': when set, defines the content of this option, as follows:¶
Flag 'E': exists to provide reliability for this option (like that in "ADD_ADDR").¶
Flag 'B': indicates whether the subflow over which the option is received is a backup one (that is compatiable with the value by MP_PRIO).¶
Address ID: Address ID in MP_Navigation Option is used to identify the address ID of target network Interface. When the client receives the MP_Navigation Option, it will determine the target network interface by the Address ID. Address ID may map to one or more ongoing subflows and the client will select one for data transfer by its local strategies.¶
This section will be finished later.¶
IANA is requested to assign a MPTCP option subtype for the MP_Navigation option.¶
Since MP_Navigation option is neither encrypted nor authenticated, on-path attackers and middleboxes could remove, add or modify the MP_Navigation option on observed Multipath TCP connections.¶