Relativistic complete active space self-consistent field (RelCASSCF)¶
Description¶
The relativistic analogue of CASSCF is implemented in BAGEL. The second-order algorithm which is basically the same as its non-relativistic analogue is used by default.
Title: zcasscf
Keywords¶
state
Description: Number of states computed for each spin value. All are included in the state-averaging procedure when orbitals are optimized.
Datatype: vector<int>
Default: There is no default; this parameter must be supplied in the input.
Note: An array of integers is supplied, where each one indicates the number of states for a given spin value. For example,
the input [ 1 ] gives a singlet ground state, while [ 3, 0, 1 ] gives three singlets and one triplet (6 states total).
Be careful! While the spin values you specified are used in generating guess CI coefficients, the spin sectors will mix, and the
algorithm returns the n lowest eigenstates regardless of their spin expectation values.
nact
Description: Number of active orbitals
Datatype: int
Default: 0
nclosed
Description: Number of closed orbitals
Datatype: int
Default: Number of electrons / 2.
active
Description: Specify active orbitals. Note that the orbital index starts from 1.
Datatype: vector<int>
Default: Nact / 2 orbitals lower and higher from the valence orbital.
Example:
[36, 37, 39] : include 36th, 37th, and 39th orbitals.
algorithm
Description: Orbital optimization algorithm.
Datatype: string
Values:
second
: second-order algorithm.noopt
: no orbital optimization.Default:
second
gaunt
Description: Turns on the Gaunt interaction in the Hamiltonian.
Datatype: bool
Default: false
breit
Description: Turns on the full Breit interaction in the Hamiltonian.
Datatype: bool
Default: value copied from “gaunt” (if gaunt is true, breit is true)
Recommendation: Usually the Breit contribution is not important for molecular properties.
only_electrons
Description: This option allows the user to freeze all positronic orbitals and optimize only for rotations between electronic orbitals.
Datatype: bool
Default: false
natocc
Description: If set to “true,” occupation numbers of natural orbitals within the active space will be printed to casscf.log after each macroiteration.
Datatype: bool
Default: false
charge
Description: Molecular charge.
Datatype: int
Default: 0
hcore_guess
Description: If set to true, the one-electron Hamiltonian is diagonalized to generate initial guess orbitals.
Datatype: bool
Default: false
maxiter
Description: Maximum number of macroiterations.
Datatype: int
Default: 100
maxiter_micro
Description: Maximum number of microiterations.
Datatype: int
Default: 20
maxiter_fci
Description: Maximum number of iterations in CI coefficient optimization
Datatype: int
Default: copied from
maxiter
thresh_fci
Description: Convergence threshold for the CI coefficients
Datatype: double
Default: Value copied from
thresh
conv_ignore
Description: If set to “true,” BAGEL will continue running even if the maximum iterations is reached without convergence. Normally an error is thrown and the program terminates.
Datatype: bool
Default: false.
restart_cas
Description: If set to “true”, after each macroiteration the orbitals will be written to a binary archive with filename “zcasscf_<iter>.archive”.
They can be read back in using the “load_ref” module.
Datatype: bool
Default: false.
pop
Description: If set to true, population analysis of the molecular orbitals will be printed to a file names dhf.log.
Datatype: bool
Default: false
davidson_subspace
Description: Number of vectors retained in the limited-memory Davidson algorithm.
Datatype: int
Default: 20
Recommendation: Reduce if an insufficient amount of memory is available (do not reduce to a value lower than 3).
print_thresh
Description: Threshold below which CI coefficients are not printed.
Datatype: double
Default: 0.05
spin_adapt
Description: Spin-adapt the starting guess.
Datatype: bool
Default: true
Recommendation: Use false if the error “generate_guess produced an invalid determinant” is generated.
aniso
Description: Performs magnetic anisotropy analysis (g-factors and zero-field splitting parameters).
Datatype: int
Example¶
{ "bagel" : [
{
"title" : "molecule",
"basis" : "svp",
"df_basis" : "svp-jkfit",
"angstrom" : false,
"geometry" : [
{ "atom" : "F", "xyz" : [ 0.000000, 0.000000, 3.720616 ]},
{ "atom" : "H", "xyz" : [ 0.000000, 0.000000, 0.305956 ]}
]
},
{
"title" : "zcasscf",
"state" : [1],
"thresh" : 5.0e-7,
"nact" : 2,
"nclosed" : 4
}
]}
from which one obtains
---------------------------
CASSCF calculation
---------------------------
*** Geometry (Relativistic) ***
- 3-index ints post 0.00
- 3-index ints prep 0.00
- 3-index ints 0.00
- 3-index ints post 0.00
- Geometry relativistic (total) 0.01
* nclosed : 4
* nact : 2
* nvirt : 32
* gaunt : false
* breit : false
* active space: 2 electrons in 2 orbitals
* time-reversal symmetry will be assumed.
- Coulomb: half trans 0.01
- Coulomb: metric multiply 0.03
- Coulomb: J operator 0.00
- Coulomb: K operator 0.00
* nstate : 1
=== Dirac CASSCF iteration (svp) ===
* Using the second-order algorithm
0 0 -99.87309219 1.03e-02 0.07
res : 1.24e-01 lamb: 1.00e+00 eps : -4.46e-02 step: 2.31e-01 0.06
res : 2.29e-02 lamb: 1.00e+00 eps : -4.93e-02 step: 2.94e-01 0.06
res : 2.90e-03 lamb: 1.00e+00 eps : -4.94e-02 step: 2.93e-01 0.05
res : 8.08e-04 lamb: 1.00e+00 eps : -4.94e-02 step: 2.94e-01 0.05
res : 1.96e-04 lamb: 1.00e+00 eps : -4.94e-02 step: 2.94e-01 0.05
res : 3.17e-04 lamb: 1.00e+00 eps : -4.94e-02 step: 2.94e-01 0.05
res : 1.13e-04 lamb: 1.00e+00 eps : -4.94e-02 step: 2.94e-01 0.06
res : 1.91e-05 lamb: 1.00e+00 eps : -4.94e-02 step: 2.94e-01 0.06
1 0 -99.90008454 9.20e-04 0.57
res : 7.91e-03 lamb: 1.00e+00 eps : -2.52e-04 step: 1.27e-02 0.06
res : 1.77e-03 lamb: 1.00e+00 eps : -2.72e-04 step: 1.61e-02 0.05
res : 5.19e-04 lamb: 1.00e+00 eps : -2.75e-04 step: 1.68e-02 0.05
res : 7.75e-04 lamb: 1.00e+00 eps : -2.75e-04 step: 1.75e-02 0.05
res : 5.66e-04 lamb: 1.00e+00 eps : -2.76e-04 step: 1.84e-02 0.06
res : 2.02e-04 lamb: 1.00e+00 eps : -2.76e-04 step: 1.89e-02 0.05
res : 6.00e-05 lamb: 1.00e+00 eps : -2.76e-04 step: 1.90e-02 0.06
res : 6.44e-06 lamb: 1.00e+00 eps : -2.76e-04 step: 1.90e-02 0.06
res : 1.06e-06 lamb: 1.00e+00 eps : -2.76e-04 step: 1.90e-02 0.06
2 0 -99.90024315 1.95e-04 0.62
res : 1.42e-03 lamb: 1.00e+00 eps : -1.03e-05 step: 2.44e-03 0.06
res : 3.04e-04 lamb: 1.00e+00 eps : -1.11e-05 step: 3.12e-03 0.05
res : 9.86e-05 lamb: 1.00e+00 eps : -1.11e-05 step: 3.18e-03 0.05
res : 4.00e-05 lamb: 1.00e+00 eps : -1.11e-05 step: 3.19e-03 0.05
res : 4.83e-05 lamb: 1.00e+00 eps : -1.11e-05 step: 3.20e-03 0.06
res : 3.89e-05 lamb: 1.00e+00 eps : -1.12e-05 step: 3.24e-03 0.06
res : 1.11e-05 lamb: 1.00e+00 eps : -1.12e-05 step: 3.25e-03 0.06
res : 2.28e-06 lamb: 1.00e+00 eps : -1.12e-05 step: 3.25e-03 0.05
res : 4.11e-07 lamb: 1.00e+00 eps : -1.12e-05 step: 3.25e-03 0.05
res : 9.17e-08 lamb: 1.00e+00 eps : -1.12e-05 step: 3.25e-03 0.05
3 0 -99.90025026 5.44e-05 0.67
res : 3.82e-04 lamb: 1.00e+00 eps : -7.76e-07 step: 6.56e-04 0.05
res : 8.18e-05 lamb: 1.00e+00 eps : -8.31e-07 step: 8.43e-04 0.05
res : 2.63e-05 lamb: 1.00e+00 eps : -8.36e-07 step: 8.59e-04 0.05
res : 9.66e-06 lamb: 1.00e+00 eps : -8.36e-07 step: 8.61e-04 0.06
res : 1.02e-05 lamb: 1.00e+00 eps : -8.36e-07 step: 8.61e-04 0.06
res : 1.06e-05 lamb: 1.00e+00 eps : -8.37e-07 step: 8.71e-04 0.05
res : 2.98e-06 lamb: 1.00e+00 eps : -8.37e-07 step: 8.73e-04 0.05
res : 6.25e-07 lamb: 1.00e+00 eps : -8.37e-07 step: 8.73e-04 0.05
res : 1.21e-07 lamb: 1.00e+00 eps : -8.37e-07 step: 8.73e-04 0.05
4 0 -99.90025079 1.49e-05 0.60
res : 1.04e-04 lamb: 1.00e+00 eps : -5.79e-08 step: 1.78e-04 0.05
res : 2.24e-05 lamb: 1.00e+00 eps : -6.20e-08 step: 2.29e-04 0.05
res : 7.19e-06 lamb: 1.00e+00 eps : -6.23e-08 step: 2.34e-04 0.05
res : 2.64e-06 lamb: 1.00e+00 eps : -6.23e-08 step: 2.34e-04 0.06
res : 2.77e-06 lamb: 1.00e+00 eps : -6.24e-08 step: 2.35e-04 0.05
res : 2.90e-06 lamb: 1.00e+00 eps : -6.24e-08 step: 2.37e-04 0.05
res : 8.21e-07 lamb: 1.00e+00 eps : -6.24e-08 step: 2.38e-04 0.05
res : 1.72e-07 lamb: 1.00e+00 eps : -6.24e-08 step: 2.38e-04 0.05
5 0 -99.90025083 4.07e-06 0.55
res : 2.83e-05 lamb: 1.00e+00 eps : -4.30e-09 step: 4.86e-05 0.05
res : 6.10e-06 lamb: 1.00e+00 eps : -4.61e-09 step: 6.25e-05 0.05
res : 1.96e-06 lamb: 1.00e+00 eps : -4.63e-09 step: 6.37e-05 0.06
res : 7.19e-07 lamb: 1.00e+00 eps : -4.64e-09 step: 6.39e-05 0.05
res : 7.56e-07 lamb: 1.00e+00 eps : -4.64e-09 step: 6.39e-05 0.06
res : 7.92e-07 lamb: 1.00e+00 eps : -4.64e-09 step: 6.46e-05 0.05
res : 2.25e-07 lamb: 1.00e+00 eps : -4.64e-09 step: 6.48e-05 0.06
6 0 -99.90025083 1.11e-06 0.51
res : 7.70e-06 lamb: 1.00e+00 eps : -3.20e-10 step: 1.32e-05 0.06
res : 1.66e-06 lamb: 1.00e+00 eps : -3.43e-10 step: 1.70e-05 0.05
res : 5.35e-07 lamb: 1.00e+00 eps : -3.44e-10 step: 1.74e-05 0.06
res : 2.00e-07 lamb: 1.00e+00 eps : -3.45e-10 step: 1.74e-05 0.05
7 0 -99.90025083 3.03e-07 0.36
* Second-order optimization converged. *
References¶
BAGEL references¶
Description of Reference | Reference |
---|---|
Relativistic CASSCF | J. E. Bates and T. Shiozaki, J. Chem. Phys. 142, 044112 (2015). |
Note that the code has since been replaced by a more robust second-order algorithm (unpublished).
General references¶
Description of Reference | Reference |
---|---|
General text on relativistic electronic structure | M. Reiher and A. Wolf, Relativistic Quantum Chemistry (Wiley-VCH, Weinheim, 2009). |